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Abstract

These notes will provide a rough translation of the account of bundles of principal parts as set out
in SGA VI, II Appendice II [1]. Some notation has been modernized, but this translation attempts
to remain faithful to the original text. Any errors are undoubtedly that of the translator.

Mixed Structures

[1, II App. II, §1.1].
Fix a topological space S. Let V ⊆ Rn open. For r ∈ N, we denote Cr(V ) the space of real-valued

Frechet functions of type Cr on V . We let C∞(V ) be the limit lim←r C
r(V ). Let U ⊆ S be open. For

r ∈ N ∪ {∞}, we notice the sheaf rOU×V the sheaf of rings on U × V defined by

Γ(U ′ × V ′,r OU×V ) = C(U ′, Cr(V ))

where U ′ (resp. V ′) are open sets in U (resp. V ), and C(U ′, Cr(V ′)) denotes the space of continuous
maps from U ′ to Cr(V ′). There is a canonical injection

pr−11 (OU ) →r OU×V ,

which makes (U × V,r OU×V ) a ringed space over U .
We say that a ringed space X over S is a mixed variety of class Cr (r ∈ N ∪ {∞}) if X is locally

isomorphic (as a ringed space over S) to a space of type (U × V,r OU×V ). (If S is reduced to a point, a
variety of mixed class Cr over S is none other than a variety of class Cr in the usual sense).

Let f : X → S be a map of varieties of class Cr. For s ∈ S, the fiber Xs = f−1(s) is equipped with
the sheaf i−1s (OX)/Is, where is : Xs → X is the injection from Is the ideal of sections that vanish on Xs

as a variety of class Cr.

Relative Differential Operators

[1, II App. II, §1.2].
Following EGA VI 16 and SGA 2 VII, an infinitesmal study of mixed varieties. We will confine our-

selves to a quick review of the notions we will need.

[1, II App. II, §1.2.1].
Let f : X → S be a mixed variety of class C∞. For n ∈ N, define the sheaf Pn

X/X the sheaf of principal
parts of order n on X. There are two projections pr1 and pr2 of X ×S X to X of OX -algebras over OX

locally free of finite type as an OX -module. When we do not specifiy the structure of an OX -module on
Pn
X/S , it will be understood that this is the one from pr1. There is a canonical isomorphism

P0
X/S

∼= OX

P1
X/S

∼= OX ⊕ Ω1
X/S

where Ω1
X/S is the sheaf of relative differentials on X over S the relative cotangent sheaf. Notice TX/S is

the dual of Ω1
X/S which we denote the relative tangent sheaf. The sheaf TX/S (resp. Ω1

X/S) is the sheaf

of sections of a finite rank vector bundle on X which we denote the relative (co)tangent fiber which is a
mixed S-variety over X.

There is a f−1OS-linear homomorphism (corrresponding to the structure of the OX -algebra defined
by pr2)

dnX/S : OX → Pn
X/S

which has a section of OX associated to the principal part to order n, which we denote the universal
differential operator of order n on X relative to S.

[1, II App. II, §1.2.2]
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More generally, if E is a locally free OX -module of finite type, one can consider the sheaf Pn
X/S(E) =

Pn
X/S ⊗OX

E1 of principal parts of order n on E (the tesor product being defined by the second structure

of an OX -module on Pn
X/S), and we have a universal differential operator

dnX/S(E) : E → Pm
X/S(E).

If E ,F are locally free OX -modules of finite type. By definition, a differential operator from E to F
of order ≤ n is an f−1OX -linear2 homomorphism from E to F that factors through dnX/S(E) into an

OX -linear homomorhpism from Pn
X/S(E) to F (the factorization is unique). In other words, the operator

dnX/S(E) establishes a unique bijection

HomOX

(
Pn
X/S(E),F

)
∼= Diffn(E ,F),

where Diffn(E ,F) is the set of all differential operators E to F or order ≤ n.

[1, II App. II, §1.2.3]
We will also have to consider differential operators with complex coefficients. Denote (OS ⊗C) (resp.

(OX ⊗ C)) the complexification of OS (resp. OX). Let E ,F be locally (OX ⊗ C)-modules of finite type.
By a differential operator E to F of order ≤ n, we will mean a f−1(OS ⊗ C)-linear homomorphism E
to F that factorizes through dnX/S(E) as an (OX ⊗ C)-linear homomorphism from Pn

X/S(E) to F . If we

denote Diffn
C(E ,F) this set of operators, the operator dnX/S(E) defines a bijection

Hom(OX⊗C)

(
Pn
X/S(E),F

)
∼= Diffn

C(E ,F).

[1, II App. II, §1.2.4]
For n ≥ 1, we have a canonical exact sequence

0 Symn(Ω1
X/S) Pn

X/S Pn−1
X/S 0

From which, on OX -tensoring with a locally free OX -module (resp. (OX ⊗ C)) of finite type, an exact
sequence of OX (resp. (OX ⊗ C)-modules):

0 Symn(Ω1
X/S)⊗OX

E Pn
X/S(E) Pn−1

X/S(E) 0.

For F an locally free OX (resp. (OX ⊗C)-module) of finite type, one can apply the functor HomOX
(·,F)

(resp. Hom(OX⊗C)(·,F)) to the exact sequences above to deduce exact sequences

0 Diffn−1(E ,F) Diffn(E ,F) HomOX
(Symn(Ω1

X/S)⊗OX
E ,F)

σn

(resp.

0 Diffn−1
C (E ,F) Diffn

C(E ,F) Hom(OX⊗C)(Sym
n(Ω1

X/S)⊗OX
E ,F))

σn

If X is paracompact and flasque over OX
3, one can complete the sequence appending a zero on the right.

The homomorphism σn is called a symbol ; which associates a differential operator from E to F or order
≤ n a “homogeneous polynomial map of degree n from Ω1

X/S to HomOX
(E ,F) (resp. Hom(OX⊗C)(E ,F))”,

which we can still consider as a homomorphism px(E) → px(F) (where p is the projection on X to teh
relative cotangent fiber), satisfying certain homogeneous conditions.

1The text discusses a tensor product but prints ⊕.
2Should this be f−1OS-linear?
3This was confusing in the french, “si X est paracompact et OX -mou”, taking “mou” to be “flasque”.
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Let E ,F ,G be locallly free OX -modules of finite type, u ∈ Diffm(E ,F), v ∈ Diffn(F ,G), from which
vu ∈ Diffm+n(E ,G). One can easily check the relation

σm+n(vu) = σn(v)σm(u).

(We hvae the same relationship for differential operators with complex coefficients.) In particular, if
composing two differential operators is zero, then composing their symbols is as well.
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